Genetic structure after forest fragmentation: a landscape ecology perspective on Acer saccharum

Author:

Foré Stephanie A.,Hickey R. James,Vankat John L.,Guttman Sheldon I.,Schaefer Robert L.

Abstract

Fragmentation of large expanses of forests into small stands has isolated local populations of organisms. Sugar maple (Acer saccharum) was used to determine if the degree of forest fragment isolation affects genetic diversity and structure of local populations. Genetic data were collected from canopy (prefragmentation) and juvenile (postfragmentation) individuals in 15 woodlots. Genotypes were inferred from phenotypic enzyme patterns of seven enzymes representing eight loci extracted from cambium and resolved with starch gel electrophoresis. Analyses of allelic data indicated that genetic diversity was not significantly different between juvenile or canopy subdivisions, or between woodlots with low and high degrees of isolation. Genetic differentiation among woodlots was significantly greater for the canopy than for the juvenile subdivision. Estimates of gene flow indicate that postfragmentation gene flow rates are higher than prefragmentation rates. Apparently, sugar maple's high potential for long-distance gene flow is enhanced by altered wind flux across a fragmented landscape. The results also show that forest fragmentation does not always result in greater isolation of local populations. Key words: sugar maple, gene flow, conservation, isolation, allozymes.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3