The State of Hydrogen Desorbing from Intermediates Formed by Ammonia Interaction with Tungsten Surfaces

Author:

Peng Y. K.,Dawson P. T.

Abstract

Ammonia interaction with a tungsten surface can generate dense adlayers containing nitrogen and hydrogen, i.e. an η-species of surface stoichiometry Ws2N3H. In thermal desorption mass spectrometry experiments, hydrogen desorbing from the η-species interacts with the glass wall in a manner similar to that previously observed for atomic hydrogen. This paper describes two mass spectrometric techniques designed to confirm this conclusion directly. The first method uses a line-of-sight geometry between the tungsten filament and the ionization source of the mass spectrometer and the results indicate that, at least, part of the hydrogen desorbing from the η-species does so atomically. In the second method a multiple wall collision geometry is used but prior saturation of the wall with D atoms will result in an HD+ ion current for desorbing H atoms. The results suggest that 26% of the hydrogen desorbs atomically. Hydrogen atom desorption from the η-species occurs at tungsten filament temperatures below those required for hydrogen atom evaporation from a pure hydrogen adlayer. It is proposed that a reduced binding energy for adsorbed hydrogen atoms and a reduced mobility of these adatoms arises from the presence of a large surface concentration of nitrogen. This will result in the rates of atomic hydrogen desorption and bimolecular recombination becoming comparable at temperatures lower than is the case for pure hydrogen interaction with tungsten. The implications of these results for the ammonia synthesis reaction are discussed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3