Abstract
Ammonia interaction with a tungsten surface can generate dense adlayers containing nitrogen and hydrogen, i.e. an η-species of surface stoichiometry Ws2N3H. In thermal desorption mass spectrometry experiments, hydrogen desorbing from the η-species interacts with the glass wall in a manner similar to that previously observed for atomic hydrogen. This paper describes two mass spectrometric techniques designed to confirm this conclusion directly. The first method uses a line-of-sight geometry between the tungsten filament and the ionization source of the mass spectrometer and the results indicate that, at least, part of the hydrogen desorbing from the η-species does so atomically. In the second method a multiple wall collision geometry is used but prior saturation of the wall with D atoms will result in an HD+ ion current for desorbing H atoms. The results suggest that 26% of the hydrogen desorbs atomically. Hydrogen atom desorption from the η-species occurs at tungsten filament temperatures below those required for hydrogen atom evaporation from a pure hydrogen adlayer. It is proposed that a reduced binding energy for adsorbed hydrogen atoms and a reduced mobility of these adatoms arises from the presence of a large surface concentration of nitrogen. This will result in the rates of atomic hydrogen desorption and bimolecular recombination becoming comparable at temperatures lower than is the case for pure hydrogen interaction with tungsten. The implications of these results for the ammonia synthesis reaction are discussed.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献