Author:
Belova Alla,Kirkwood Sheila,Raffalski U,Kopp Gerhard,Hochschild Gerd,Urban Joachim
Abstract
The signature of five-day planetary waves in ozone and temperature data from the advanced sub-millimeter radiometer aboard the Odin satellite is examined. The period January–March 2005 and heights from 24–56 km are used. We find highest wave amplitudes in both temperature and ozone in the winter hemisphere at 60°N-70°N. The relative phases between ozone and temperature perturbations show the expected antiphase behaviour in the photochemistry-dominated region at about 40 km altitude. We compare the global planetary wave properties from Odin with five-day perturbations in ozone measured by the millimeter wave radiometer in Kiruna (KIMRA, 67°N, 20°E). In the early part of the comparison interval (January–February) at 40 km, we find good correlation between the two in terms of both phase and amplitude of the perturbations. In the latter part of the comparison interval (March) where mean ozone levels are higher, the amplitudes of the ozone five-day perturbations over Kiruna are much higher than the wave amplitudes found using Odin. We conclude that five-day variations in ozone due to planetary waves can be detected by KIMRA in some circumstances, but that other sources of variability dominate at other heights and times. PACS No.: 94.10.Jd
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献