The 1993 Merck Frosst Award. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart

Author:

Lopaschuk Gary D.,Gamble Jim

Abstract

It has long been known that most of the energy production in the heart is derived from the oxidation of fatty acids. The other important sources of energy are the oxidation of carbohydrates and, to a lesser extent, ATP production from glycolysis. The contribution of these pathways to overall ATP production can vary dramatically, depending to a large extent on the carbon substrate profile delivered to the heart, as well as the presence or absence of underlying pathology within the myocardium. Despite extensive research devoted to the study of the individual pathways of energy substrate metabolism, relatively few studies have examined the integrated regulation between carbohydrate and fatty acid oxidation in the heart. While the mechanisms by which fatty acids inhibit carbohydrate oxidation (i.e., the Randle cycle) have been characterized, much less is known about how carbohydrates regulate fatty acid oxidation in the heart. It is clear that an increase in intramitochondrial acetyl-CoA derived from carbohydrate oxidation (via the pyruvate dehydrogenase complex) can downregulate β-oxidation of fatty acids, but it is not clear how fatty acid acyl group entry into the mitochondria is downregulated when carbohydrate oxidation increases. Recent interest in our laboratory has focused on the involvement of acetyl-CoA carboxylase (ACC) in this process. While it has been known for some time that malonyl-CoA does exist in heart tissue, and that it is a potent inhibitor of carnitine palmitoyltransferase 1 (CPT 1), it has only recently been demonstrated that an isoenzyme of ACC exists in the heart that is a potential source of malonyl-CoA. These findings led to the hypothesis that ACC may be an important regulator of myocardial fatty acid oxidation. We have recently provided evidence that heart ACC, via the production of malonyl-CoA, can regulate fatty acid oxidation. We believe that ACC represents a key enzyme in a feedback loop that decreases acyl-CoA transport into the mitochondria when carbohydrate oxidation rates are increased. It is possible that ACC may represent a novel and potentially important site for pharmacological intervention in pathological situations characterized by abnormal fatty acid metabolism. This review provides a brief overview of the regulation of myocardial metabolism followed by our recent studies that support the hypothesis that ACC has an important role in regulating the balance between carbohydrate and lipid metabolism in the heart.Key words: fatty acids, glucose, malonyl-CoA, carnitine palmitoyltransferase 1, myocardial ischemia.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3