Sedimentary processes and the evolution of the distal bayside of Long Point, Lake Erie

Author:

Davidson-Arnott Robin G. D.,Reid Heather E. Conliffe

Abstract

Long Point spit, on the north shore of Lake Erie, is >40 km long and presently building into water that is >40 m deep. Annual sediment supply to the spit is estimated to be 1.0 × 106 m3∙a−1 and is derived from the erosion of cohesive bluffs along more than 90 km of shoreline to the west. The shoreline of the distal bayside consists of narrow barriers that connect the ends of dune ridges and enclose interdune ponds and swales. Unlike most barrier spits, the distal end shows little evidence of the formation of dune recurves, and the shoreline of the bayside, rather than fronting a protected bay, is exposed to waves generated by northeast winds blowing over a fetch >100 km. Results of wave refraction analysis indicate that because of the great depth of water at the tip, there is almost no refraction of the dominant westerly and southwesterly waves around the distal end, thus inhibiting the formation of recurves. Net sediment transport on the distal bayside is towards the distal end of the spit. The result is the development of a narrow spit platform extending the spit directly into the deepest part of Lake Erie. All sediment reaching the distal end along the exposed south shore is transported onto this platform and none reaches the distal bayside.The negative sediment budget on the distal bayside results in transgression of the shoreline through truncation of the dune ridges, and overwash and breaching of the small barriers. Historical aerial photographs show that most of the overwash and breaching occurs during periods of long-term high lake levels, with the barriers being rebuilt landward of their former position during the following periods of lower lake levels. Progradation of the south shore at the distal end is thus partly counterbalanced by the transgression of the bayside.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3