Propidium monoazide real-time PCR amplification for viable Salmonella species and Salmonella Heidelberg in pork

Author:

Zhai Ligong12,Li Junjie1,Tao Tingting1,Lu Zhaoxin1,Lv Fengxia1,Bie Xiaomei1

Affiliation:

1. College of Food Science and Technology, Nanjing Agricultural University, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of China, Nanjing, Jiangsu Province, China.

2. College of Food Engineering, Anhui Science and Technology University Chuzhou, Anhui Province, China.

Abstract

Salmonella enterica serovar Heidelberg causes foodborne infections and is a major threat to the food chain and public health. In this study, we aimed to develop a rapid molecular typing approach to identify Salmonella enterica serovar Heidelberg. Using comparative genomics, four serovar-specific gene fragments were identified, and a real-time polymerase chain reaction (PCR) combined with a propidium monoazide (PMA) pretreatment method was developed for simultaneous detection of viable Salmonella sp. (invA) and Salmonella Heidelberg (SeHA_C3258). The assay showed 100% specificity for all strains tested. The assay was able to distinguish effectively viable or dead cells with the PMA. The detection limit was 2.4 CFU/mL following 6 h of incubation in enrichment Luria–Bertani medium, and the assay could detect 1.7 × 102 CFU/mL in the presence of pork background flora. In artificially contaminated pork, real-time PCR detected inoculum levels of 1.15 CFU/25 g of pork after a 6 h enrichment. Thus, our findings indicated that this comparative genomics approach could be used to screen for serovar-specific fragments and that real-time PCR with PMA was a simple and reliable method for detecting viability of Salmonella species and Salmonella Heidelberg.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3