Native bacterial communities and Listeria monocytogenes survival in soils collected from the Lower Mainland of British Columbia, Canada

Author:

Falardeau Justin1,Walji Khalil2,Haure Maxime3,Fong Karen1,Taylor Greg4,Ma Yussanne4,Smukler Sean2,Wang Siyun1

Affiliation:

1. Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

2. Applied Biology and Soil Science, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

3. Agri-food engineering, Agrosup Dijon, 21000 Dijon, France.

4. British Columbia Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada.

Abstract

Soil is an important reservoir for Listeria monocytogenes, a foodborne pathogen implicated in numerous produce-related outbreaks. Our objectives were to (i) compare the survival of L. monocytogenes among three soils, (ii) compare the native bacterial communities across these soils, and (iii) investigate relationships between L. monocytogenes survival, native bacterial communities, and soil properties. Listeria spp. populations were monitored on PALCAM agar in three soils inoculated with L. monocytogenes (∼5 × 106 CFU/g): conventionally farmed (CS), grassland transitioning to conventionally farmed (TS), and uncultivated grassland (GS). Bacterial diversity of the soils was analyzed using 16S rRNA targeted amplicon sequencing. A 2 log reduction of Listeria spp. was observed in all soils within 10 days, but at a significantly lower rate in GS (Fisher’s least significant difference test; p < 0.05). Survival correlated with increased moisture and a neutral pH. GS showed the highest microbial diversity. Acidobacteria was the dominant phylum differentiating CS and TS from GS, and was negatively correlated with pH, carbon, nitrogen, and moisture. High moisture content and neutral pH are likely to increase the ability of L. monocytogenes to persist in soil. This study confirmed that native bacterial communities and short-term survival of L. monocytogenes varies across soils.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3