Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt

Author:

Naguib Martha M.1,Khairalla Ahmed S.2,El-Gendy Ahmed O.2,Elkhatib Walid F.34

Affiliation:

1. Department of Biotechnology and Life Sciences, Faculty of Post Graduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.

2. Department of Microbiology & Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.

3. Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia 11566, Cairo, Egypt.

4. Department of Microbiology and Immunology, School of Pharmacy & Pharmaceutical Industries, Badr University in Cairo, Entertainment Area, Badr City, Cairo, Egypt.

Abstract

An important mechanism for microbial resistance to mercury is its reduction into elemental mercury (facilitated by the merA gene). Thirty-eight microbial isolates from a variety of wastewater sources in Egypt were collected. Approximately 14 of the 38 isolates exhibited not only a high degree of tolerance to mercury (up to 160 ppm) but also a high degree of resistance to other tested heavy metals (Cu, Co, Ni, and Zn). From these 14, the 10 most resistant isolates were selected for further study and were found to include 9 Gram-negative and 1 Gram-positive bacterial strains. Multi-antibiotic-resistance profiles were detected for 6 out of the 10 selected isolates. All the tested Gram-negative isolates (n = 9) harbored a plasmid-encoded merA gene. The mercury removal effectiveness for the 10 selected isolates ranged between 50% and 99.9%, among which Stenotrophomonas maltophilia ADW10 recorded the highest rate (99.9%; at an initial mercury concentration of 20 ppm). To the best of our knowledge, this is the first study to (i) demonstrate the presence of a multimetal-resistant S. maltophilia bacterium with a high mercury tolerance capacity that would make it a suitable candidate for future bioremediation efforts in heavy-metal-polluted areas in Egypt and (ii) report Pseudomonas otitidis as one of the mercury-resistant bacteria.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3