Affiliation:
1. Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada.
2. Department of Biochemistry, University of Alberta, 347 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada.
Abstract
In the myocardium, the Na+/H+ exchanger isoform 1 (NHE1) plays a pivotal role in mediating ischemia–reperfusion (I/R) injury by causing intracellular Na+ accumulation that results in a subsequent increase in intracellular calcium (Ca2+ overload). One of the major clinical correlates of I/R injury is contractile dysfunction, in which Ca2+ overload via increased Na+/Ca2+ exchange is a major contributor. To better understand the cellular role of NHE1 during I/R injury, contractile function and calcium transients were measured during metabolic inhibition and recovery in single ventricular myocytes from transgenic mice with elevated NHE1 expression. During normoxic conditions, no differences were seen between NHE1-overexpressing cardiomyocytes and wild-type (WT) cardiomyocytes with respect to fractional cell shortening (FCS), rate of shortening (+dL/dt), and rate of relaxation (–dL/dt). When metabolic recovery followed metabolic inhibition, NHE1-overexpressing ventricular myocytes exhibited a significant increase in FCS (130.2% ± 11.77% baseline) and ±dL/dt (146.93% ± 12.27% baseline). This correlated with a significant increase in the concentration of diastolic intracellular calcium, which was attenuated by the NHE1 inhibitor HOE694. These results indicate that in normoxic conditions, elevated NHE1 expression does not alter contractile function. During metabolic recovery, however, elevated NHE1 expression increased diastolic Ca2+ loading that led to augmented cell contractility.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献