Forest dynamics and the growth decline of red spruce and sugar maple on Bolton Mountain, Vermont: a comparison of modeling methods

Author:

Gavin Daniel G.1,Beckage Brian1,Osborne Benjamin1

Affiliation:

1. Department of Plant Biology, University of Vermont, Burlington, VT 05405-0086, USA.

Abstract

Montane forests in the northeastern United States have experienced symptoms of declining vigor, such as branch dieback and increased mortality, over the last half-century. These declines have been attributed to the cumulative impacts of acid deposition, but reconstructing these declines from tree-ring records has proved difficult because of confounding factors that affect low-frequency growth patterns, including climate and natural growth trajectories following disturbance. We obtained tree-ring records of red spruce ( Picea rubens Sarg.) and sugar maple ( Acer saccharum L.) from three elevations on Bolton Mountain, Vermont, and applied traditional dendroclimatological analyses that revealed a profound declining growth–climate correlation since ca. 1970 for sugar maple but much less so for red spruce. We then applied a new multifaceted statistical approach that conservatively detrends tree-ring records by minimizing the influences of tree size, age, and canopy disturbances on radial growth. In contrast with the traditional analysis, this approach yielded chronologies that were consistently correlated with climate but with important exceptions. Low-elevation sugar maple suffered distinct episodes of slow growth, likely because of insect defoliators, and also a progressive decline since ca. 1988. Red spruce experienced subdecadal episodes of decline that may be related to freeze–thaw events known to injure foliage but showed no evidence of a progressive decline. This analysis was supported by a forest plot resurvey that indicated major declines in these species.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3