Thermospheric heating away from the auroral oval during geomagnetic storms

Author:

Burns A. G.,Killeen T. L.,Roble R. G.

Abstract

Model predictions indicate that the high-latitude thermosphere near the F2 peak undergoes strong heating during geomagnetic storms. Experimental studies at middle and equatorial latitudes have indicated that heating occurs during geomagnetic storms, although the overall morphology of these temperature changes is not clear. In this paper we use data from the DE-2 (dynamics explorer) satellite to study this morphology at middle and high latitudes, and then use a simulation of the November 24, 1982 storm, by the NCAR–TIGCM, to compare model output and data on a "one-on-one" basis for an individual orbit in the middle of this storm. Agreement between model and data is good in the winter hemisphere, so we use a thermodynamic diagnostic processor to make a preliminary investigation of the mechanisms by which geomagnetic storms cause temperature increases at lower latitudes. The major conclusions from this work are (i) unlike compositional changes, thermospheric temperature changes do not display a long "tail" into the post-midnight, mid-latitude region; (ii) the pattern of heating during geomagnetic storms is complex, a result of the complicated physical processes that occur during geomagnetic storms; (iii) heating due to advection is approximately balanced by expansion of the gas and downward heat conduction in the postmidnight region; (iv) model predictions for this storm indicate that the greatest temperature increase at 40° N is seen in the dawn sector; (v) early in the storm the strongest compressional heating at latitudes near 40° N is found in the premidnight region, where parcels of air are slowed by sunward ion convection, and consequently converge causing downward winds; (vi) compressional heating also occurs in the afternoon, in a region where expansion of the gas, and hence cooling, occurs during quiet geomagnetic times.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of a Neutral “Tongue” Observed by GOLD During the Geomagnetic Storm on May 11, 2019;Journal of Geophysical Research: Space Physics;2021-06

2. A Modeling Study of the Responses of Mesosphere and Lower Thermosphere Winds to Geomagnetic Storms at Middle Latitudes;Journal of Geophysical Research: Space Physics;2019-05

3. Simulations of the equatorial thermosphere anomaly: Geomagnetic activity modulation;Journal of Geophysical Research: Space Physics;2014-08

4. The NCAR TIE-GCM;Modeling the Ionosphere-Thermosphere System;2014-03-14

5. Energetics and Composition in the Thermosphere;Modeling the Ionosphere-Thermosphere System;2014-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3