Abstract
A new formulation for the analysis of low density multiple-ion swarms drifting, diffusing, and inter-reacting in a neutral gas is proposed on a transport theory basis. A set of coupled three-dimensional transport equations for an arbitrary number of ion species, which governs the number densities of the ion swarms as functions of time and position coordinates, is exactly solved using a Fourier transform in a matrix representation. A picture of dynamic equilibrium state for hypothetical four ion swarms in a neutral gas is numerically obtained. Also, experimental data of transport coefficients and reaction rates for (Li+, Li+•N2, Li+•2N2)flN2 system are examined in a complete reversible cyclic reaction scheme and compared with a Green's function method. The initial and boundary conditions, the analysis in gas mixtures, and the inelastic process associated with the present formulation are briefly discussed. Key words: ion swarm, cluster ion, transport equation, ion–molecule reaction.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献