Author:
Shoesmith D.W.,Hocking W.H.,Ikeda B.M.,King F.,Noël J.J.,Sunder S.
Abstract
The permanent disposal of nuclear fuel wastes requires the development of models that can assess the performance of a disposal vault over long periods of time. Models to assess the long-term stability of the nuclear fuel (UO2) and the corrosion performance of the waste container (either copper or titanium) have been based on electrochemical principles. Here we review the chemical/electrochemical performance of fuel and the two candidate container materials, and describe some of the electrochemical studies undertaken either to develop the mechanistic understanding upon which these models are based or to measure the values of parameters required to evaluate long-term performance. These include the following: the anodic dissolution of UO2; the reduction of O2 on various specimens of UO2; the crevice corrosion of various titanium alloys; the impedance characteristics of passive films on Ti alloys; the anodic dissolution of copper in chloride solutions; the reduction of O2 on copper; the effect of various transport barriers on the corrosion of copper; and the prediction of the corrosion potential of copper in aerated chloride solutions. Keywords: uranium dioxide, copper, titanium, nuclear waste, oxygen.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献