Isothermal modeling of sand–bentonite mixtures at elevated temperatures

Author:

Lingnau B.E.,Graham J.,Tanaka N.

Abstract

Two models are proposed for describing the stress–strain behavior of sand–bentonite (buffer) mixtures at elevated temperatures: (1) isothermal pseudoelasticity and (2) isothermal elastic-plasticity. Data to support the models come from consolidated undrained triaxial compression tests performed on dense saturated buffer specimens at effective confining stresses up to 9.0 MPa and temperatures of 26°, 65°, and 100 °C. Measurements indicate that volumes decrease with increasing temperature if the tests are carried out under drained conditions. These trends can be modelled by a family of hardening lines in semilog compression space. Power law relationships are presented for undrained shear-strength envelopes that increase in size with an increase in temperature. The slopes of unload-reload lines, κ, in semilog compression space vary with temperature and can be related to systematic variation in the friction angle [Formula: see text]. The shear modulus G50 at 50% peak strength also depends on temperature. Several plotting techniques are used to show the existence of different state boundary surfaces for each test temperature. Key words : sand–bentonite, buffer, compression, shear strength, temperature, modelling.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3