Author:
Lingnau B.E.,Graham J.,Tanaka N.
Abstract
Two models are proposed for describing the stress–strain behavior of sand–bentonite (buffer) mixtures at elevated temperatures: (1) isothermal pseudoelasticity and (2) isothermal elastic-plasticity. Data to support the models come from consolidated undrained triaxial compression tests performed on dense saturated buffer specimens at effective confining stresses up to 9.0 MPa and temperatures of 26°, 65°, and 100 °C. Measurements indicate that volumes decrease with increasing temperature if the tests are carried out under drained conditions. These trends can be modelled by a family of hardening lines in semilog compression space. Power law relationships are presented for undrained shear-strength envelopes that increase in size with an increase in temperature. The slopes of unload-reload lines, κ, in semilog compression space vary with temperature and can be related to systematic variation in the friction angle [Formula: see text]. The shear modulus G50 at 50% peak strength also depends on temperature. Several plotting techniques are used to show the existence of different state boundary surfaces for each test temperature. Key words : sand–bentonite, buffer, compression, shear strength, temperature, modelling.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献