Author:
Gudgin Eva,Lopez-Delgado Ricardo,Ware William R.
Abstract
Tryptophan fluorescence decay kinetics have been systematically investigated in aqueous solutions as a function of pH as well as in a variety of buffer solutions. Below pH 7.0, the decay appears to be double exponential with a subnanosecond component confirming the previous findings of Rayner and Szabo (3). In the low pH region, where the proton concentration becomes kinetically significant, tryptophan fluorescence is collisionally quenched by [H+] with diffusion controlled rate and no experimental evidence is found regarding the appearance at low pH of a new tryptophan molecular species, namely the cationic form. At pH ≥ 7.0, the decay becomes triple-exponential with the appearance of a long component whose contribution to the total emission intensity increases rapidly with increasing pH at the expense of the other two. Lifetimes and relative intensities of each decay component depend in a complex way on pH and on the buffer chemical composition.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
108 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献