Kinetics of the reduction of the tropylium and xanthylium cations by 1,4-dihydropyridine derivatives

Author:

Bunting John W.,Conn M. Morgan

Abstract

The pH-dependences of the apparent second-order rate constants [Formula: see text] for the reduction of 2,4,6-cycloheptatrien-1-ol and 9-xanthydrol by each of 1-benzyl-1,4-dihydronicotinamide (BNH) and 10-methyl-9,10-dihydroacridine (MAH) have been measured in 20% acetonitrile – 80% water, at 25 °C and ionic strength 1.0. For each of these reactions, the pH-dependence of [Formula: see text] is only consistent with reduction occurring via the aromatic cation (either tropylium or xanthylium) that is present in equilibrium with these alcoholic species. The relative second-order rate constants [Formula: see text] for reductions by these two reducing agents (1700 for tropylium and 770 for xanthylium) are similar for these two cations. These ratios are also similar to those observed for a variety of nitrogen heteroaromatic hydride acceptors, even though the absolute magnitudes of these rate constants vary by 1010-fold. The second-order rate constants for the reductions of the tropylium and xanthylium cations are predicted reasonably well by their [Formula: see text] values, with the latter cation being (7 × 105)-fold more reactive than its π-isoelectronic N-methyl acridinium cation. The xanthylium cation has the greatest [Formula: see text] ratio yet observed for any heteroaromatic cation, and this value further extends the known range of this ratio as a function of reactivity. Keywords: hydride transfer, kinetics of reduction, 1,4-dihydropyridine derivatives, tropylium cation, xanthylium cation.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3