Biradical radiationless decay channel in adenine and its derivatives

Author:

Zgierski Marek Z,Patchkovskii Serguei,Lim Edward C

Abstract

Coupled-cluster calculations of increasing accuracy (approximate doubles: CC2; doubles: EOM-CCSD; connected triples: CR-EOM-CCSD(T)) for CIS-optimized potential energy profiles of adenine and its derivatives indicate that the ultrafast internal conversion of the optically excited π π* state occurs through a state switch to a biradical state, which intersects the ground state at a lower energy. The electronic nature of the biradical state is defined by an electronic configuration in which one unpaired electron occupies a π* orbital confined to the five-membered ring. The second unpaired electron is localized very strongly on a p-type C2 atomic orbital of the six-membered ring. The biradical state minimum has a strongly puckered six-membered ring and a C2–H bond, which is twisted nearly perpendicular to the average ring plane. Consistent with the biradical-mediated internal conversion, the π π* state lifetime is extremely short in adenine and 9-methyladenine, which have barrierless crossing to the biradical state. The lifetime is slightly longer in N,N-dimethyladenine, which has a small barrier for the state switch. In 2-aminopurine the biradical state is found above the π π* state, preventing the biradical state switch and dramatically increasing the lifetime. These results, combined with an earlier work on pyrimidine bases, strongly suggest the importance of a direct decay of the doorway π π* state via a biradical state switch in the photophysics of DNA, even though the nature of the biradical state is somewhat different in purines and pyrimidines.Key words: adenine, guanine, DNA damage, radiationless decay, biradical, ab initio, coupled clusted.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3