Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai

Author:

Shen Shui-Long1,Xu Ye-Shuang1

Affiliation:

1. Department of Civil Engineering, Shanghai Jiao Tong University and State Key Laboratory of Ocean Engineering, Shanghai 200240, China.

Abstract

To predict the future behavior of land subsidence in Shanghai due to pumping of groundwater, a numerical model is established. In the proposed model, groundwater flow in three-dimensional conditions and soil deformation in one-dimensional conditions are calculated. The model takes into account the multi-aquifer-aquitard hydrogeological condition of the soft deposit of Shanghai. The variation of the coefficient of compressibility and coefficient of hydraulic conductivity of the soils with the consolidation process are simulated. Relationships among land subsidence, groundwater withdrawal volume, and groundwater level are analyzed. Comparison between the measured value and calculated value shows that the model simulates the measured value fairly well. The future of land subsidence behavior due to groundwater withdrawal is predicted and discussed via consideration of the variation of the following parameters in the future 30 years: net withdrawn volume of groundwater, pumping layer, and pumping region.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference40 articles.

1. Bear, J. 1979. Hydraulics of groundwater. McGraw-Hill, New York.

2. Linear and nonlinear solutions for one-dimensional compaction flow in sedimentary basins

3. Budhu, M. 2000. Soil mechanics and foundations. John Wiley & Sons, Inc., New York.

4. Carman, P.C. 1956. Flow of gases through porous media. Academic Press, New York.

5. Land subsidence due to groundwater drawdown in Shanghai

Cited by 319 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3