Characteristics of anArabidopsisglyoxylate reductase: general biochemical properties and substrate specificity for the recombinant protein, and developmental expression and implications for glyoxylate and succinic semialdehyde metabolism in planta

Author:

Hoover Gordon J.12,Van Cauwenberghe Owen R.12,Breitkreuz Kevin E.12,Clark Shawn M.12,Merrill A. Rod12,Shelp Barry J.12

Affiliation:

1. Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada.

2. Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.

Abstract

Constitutive expression of an Arabidopsis thaliana (L.) Heynh cDNA (GenBank accession No. AY044183 ) in a succinic semialdehyde (SSA) dehydrogenase-deficient yeast ( Saccharomyces cerevisiae Hansen) mutant enables growth on γ-aminobutyrate and significantly enhances the accumulation of γ-hydroxybutyrate. In this report, the cDNA (designated hereinafter as AtGR1) was functionally expressed in Escherichia coli , and the recombinant protein purified to homogeneity. Kinetic analysis of substrate specificity revealed that the enzyme catalyzed the conversion of glyoxylate to glycolate (Km,glyoxylate= 4.5 μmol·L–1) as well as SSA to γ-hydroxybutyrate (Km, SSA= 0.87 mmol·L–1) via an essentially irreversible, NADPH-based mechanism. The enzyme had a 250-fold higher preference for glyoxylate than SSA based on the performance constants (kcat/Km), and with the exception of 4-carboxybenzaldehyde, at least a 100-fold higher preference for SSA than all other substrates tested (formaldehyde, acetaldehyde, butyraldehyde, 2-carboxybenzaldehyde, glyoxal, methylglyoxal, phenylglyoxal, phenylglyoxylate). In vitro assays of SSA reductase activity in cell-free extracts from Arabidopisis revealed its presence throughout the plant, although its specific activity was considerably higher in leaves at all developmental stages and in reproductive parts than in roots. It is proposed that the enzyme functions in redox homeostasis and the detoxification of both glyoxylate and SSA, in planta, resulting in the production of glycolate and γ-hydroxybutyrate, respectively.

Publisher

Canadian Science Publishing

Subject

Plant Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3