Author:
Choudary V. Prabhakara,Rao G. Ramananda
Abstract
A simple and rapid procedure to make yeast cells permeable by agitating with toluene–ethanol, (TE) 1:4, v/v was developed. The permeated cells retained their ability to catalyze certain enzyme reactions. Temperature and duration of agitation during TE treatment played an important role in retention of the catalytic potential of permeated cells. The in situ assay using permeated cell preparations was more sensitive even in the absence of added cofactors than the in vitro assay in detecting assimilatory nitrate reductase (NAD(P)H:nitrate oxidoreductase, EC 1.6.6.2) (NAR) activity in Candida utilis.Using in situ assay technique, different mechanisms regulating the biosynthesis of NAR in C. utilis were investigated. Nitrogen starvation did not lead to derepression of NAR. NO3− ions were absolutely essential for induction and maintenance of high levels of NAR activity. Cells grown on ammonium nitrate possessed relatively lower levels of NAR. Kinetics of NAR induction were followed as a function of time and inducer concentration. The influence of various cations on the induction of NAR by nitrate was investigated. A wide range of D-amino acids induced NAR synthesis. Of 22 L-amino acids tested only phenylalanine induced significant levels of NAR. Various intermediates of the pathway of nitrate reduction influenced the rate of NAR induction. There was a rapid disappearance of in vivo activity of the enzyme of induced yeast cells on nitrogen starvation, and the rate of loss was accelerated by the presence of NH4+.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献