Regulatory properties of yeast nitrate reductase in situ

Author:

Choudary V. Prabhakara,Rao G. Ramananda

Abstract

A simple and rapid procedure to make yeast cells permeable by agitating with toluene–ethanol, (TE) 1:4, v/v was developed. The permeated cells retained their ability to catalyze certain enzyme reactions. Temperature and duration of agitation during TE treatment played an important role in retention of the catalytic potential of permeated cells. The in situ assay using permeated cell preparations was more sensitive even in the absence of added cofactors than the in vitro assay in detecting assimilatory nitrate reductase (NAD(P)H:nitrate oxidoreductase, EC 1.6.6.2) (NAR) activity in Candida utilis.Using in situ assay technique, different mechanisms regulating the biosynthesis of NAR in C. utilis were investigated. Nitrogen starvation did not lead to derepression of NAR. NO3 ions were absolutely essential for induction and maintenance of high levels of NAR activity. Cells grown on ammonium nitrate possessed relatively lower levels of NAR. Kinetics of NAR induction were followed as a function of time and inducer concentration. The influence of various cations on the induction of NAR by nitrate was investigated. A wide range of D-amino acids induced NAR synthesis. Of 22 L-amino acids tested only phenylalanine induced significant levels of NAR. Various intermediates of the pathway of nitrate reduction influenced the rate of NAR induction. There was a rapid disappearance of in vivo activity of the enzyme of induced yeast cells on nitrogen starvation, and the rate of loss was accelerated by the presence of NH4+.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3