Fourier-transform infrared spectroscopy: a pharmacotoxicologic tool for in vivo monitoring radical aggression

Author:

Melin Anne-Marie,Perromat Annie,Deleris Gérard

Abstract

Among the physico-chemical methods that can be used to investigate induced peroxidation in living cells, Fourier transform infrared (FT-IR) spectroscopy appears to be a valuable technique as it is non-destructive and sensitive for monitoring changes in the vibrational spectra of samples. We examined microsomal fractions from rat liver and brain by FT-IR to study the effect of radical aggression induced in vivo by carbon tetrachloride (CCl4). The length of the acyl chains was increased as a consequence of peroxidation induced by the xenobiotic. Moreover, an enhanced level of cholesterol esters and an increase in phospholipids were observed in the liver and the brain, respectively. The conformational structure of the membrane proteins was changed in both the liver and the brain. In the polysaccharide region, we observed an important loss in glucidic structures, such as a decrease in liver glycogen and in some brain glycolipids. These alterations are probably due to the interactions between cells and CCl4and the metabolic changes caused by CCl4. Thus, FT-IR spectroscopy appears to be an useful tool and an accurate means for rapidly investigating the in vivo biochemical alterations induced by CCl4in microsomes, and for correlating them with biochemical and physiological data.Key words: brain, carbon tetrachloride, FT-IR, liver, microsomes.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3