Conceptual model of global plants entrapping plastics

Author:

Gallitelli Luca1ORCID,Scalici Massimiliano12

Affiliation:

1. University of Roma Tre, Department of Sciences, Viale Guglielmo Marconi, Rome 446 00146, Italy

2. National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, Palermo 90133, Italy

Abstract

Aquatic plants, seagrasses, macrophytes, mangroves, and riparian vegetation are responsible for some of the most important ecosystem services provided on the Earth. Given their role in trapping plastics along rivers, we propose a new ecosystem service of plastic entrapment by global plants. Although research started recently to study vegetation trapping plastics, little is known about the global patterns of plastic retention and remobilization by vegetation through different habitats. Given those gaps, we synthesize global data on plastic entrapment in plants providing a conceptual model to describe processes for plastic retention by vegetation. Our results demonstrate how vegetation has a pivotal role in entrapping plastics across spatial and temporal scales, finding the higher density of plastics on plants rather than in the adjacent water area. Furthermore, we proposed a conceptual model (i.e., Plant Plastic Pathway) of plants entrapping plastics, highlighting spatial and temporal scales of plastic retention and release processes in different habitats. Thus, we anticipate our conceptual model to be a starting point for more sophisticated future studies, putting effort into looking at plastic–vegetation dynamics. Our conceptual model may have a crucial effect if applied to plastic hotspot area detection with clean-up and mitigation actions in riverine ecosystems.

Funder

Ministero dell'Università e della Ricerca

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3