Transient upregulation of μ opioid receptor mRNA levels in nucleus accumbens during chronic cocaine administration

Author:

Azaryan Anahit V,Clock Barbara J,Rosenberger John G,Cox Brian M

Abstract

Chronic continuous cocaine administration for 3 days has been shown to upregulate the level of µ opioid receptor (MOR) mRNA in the nucleus accumbens (n. acc.) of rat brain. Dopamine (DA) antagonists, SCH 23390, eticlopride, and nafadotride, blocked, and DA agonists, SKF 38393, R(+)-6-bromo-APB hydrobromide, and bromocriptine, mimicked the cocaine-induced upregulation of MOR mRNA, suggesting involvement of both subfamilies of DA receptors in the effect of cocaine. In the present study the time course of cocaine-induced and DA agonist induced alterations in the level of MOR mRNA in n. acc. has been determined and compared with the changes in the level of MOR binding sites. Male Sprague-Dawley rats were treated with saline, cocaine (50 mg ·kg-1 ·day-1), or DA agonists for periods between 24 and 336 h. Expression of MOR mRNA in n. acc. was estimated using quantitative competitive polymerase chain reaction assays following reverse transcription. The cocaine-induced upregulation of MOR mRNA in n. acc. was transient, developing 2 days after exposure, and peaking at 3 days with return to baseline levels by 4 days of chronic continuous cocaine treatment. The temporal characteristics of DA agonist induced increase in the levels of MOR mRNA in n. acc. were similar to those of cocaine, with maximum effect after 3 days of treatment. The density of [3H]DAMGO binding sites in n. acc. was 30% higher after 3 days of cocaine administration than in saline-treated control animals, but returned toward baseline levels after 4 days of cocaine treatment. No changes in the binding of [3H]DAMGO were detected after 7 or 14 days exposure to cocaine. The affinity of [3H]DAMGO to n. acc. membranes (~2.0 nM) was unchanged during the cocaine treatment.Key words: cocaine, dopamine, dopamine agonists, µ opioid receptor, nucleus accumbens, polymerase chain reaction.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3