Recovery of acidified Sudbury, Ontario, Canada, lakes: a multi-decade synthesis and update

Author:

Keller W. (Bill)1,Heneberry Jocelyne2,Edwards Brie A.2

Affiliation:

1. Cooperative Freshwater Ecology Unit, Vale Living with Lakes Centre, Laurentian University, Sudbury, ON P3E 2C6, Canada.

2. Ontario Ministry of the Environment Conservation and Parks, Cooperative Freshwater Ecology Unit, Vale Living with Lakes Centre, Laurentian University, Sudbury, ON P3E 2C6, Canada.

Abstract

The Sudbury region of northeastern Ontario, Canada, provides one of the world’s best examples of the resilience of aquatic ecosystems after reductions in atmospheric contaminant deposition. Thousands of lakes around the Sudbury metal smelters were badly damaged by acid deposition. Lakes closest to the smelters were also contaminated by metal particulates. However, large reductions in atmospheric SO2 and metal emissions starting in the early 1970s have led to widespread chemical improvements in these lakes, and recovery has been observed for various aquatic biota. Studies of Sudbury-area lakes are advancing our understanding of chemical and biological lake recovery; however, recovery is a complicated process and much remains to be learned. Biological recovery has often been slow to follow chemical recovery, and it has become apparent that the recovery of lakes from acidification is closely linked to interactions with other large-scale environmental stressors like climate change and Ca declines. Thus, in our multiple-stressor world, recovery may not bring individual lakes back to their exact former state. However, with time, substantial natural biological recovery toward typical lake communities can be reasonably expected for most but not necessarily all biota. For organisms with limited dispersal ability, particularly fish, human assistance may be necessary to re-establish typical communities. In lakes where food webs have been severely altered, re-establishment of typical diverse fish communities may in fact be an important element aiding the recovery of other important components of aquatic ecosystems including zooplankton and benthic macroinvertebrates. In the lakes closest to the smelters, where historically watersheds as well as lakes were severely damaged, the recovery of aquatic systems will be closely linked to ongoing terrestrial recovery and rehabilitation, particularly through the benefits of increased inputs of terrestrially derived organic matter. The dramatic lake recovery observed in the Sudbury area points to a brighter future for these lakes. However, continued monitoring will be needed to determine future changes and help guide the management and protection of Sudbury-area lakes in this multiple-stressor age.

Publisher

Canadian Science Publishing

Subject

General Environmental Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3