Inshore–Offshore Sedimentation Differences Resulting from Resuspension in the Eastern Basin of Lake Erie

Author:

Bloesch J.

Abstract

From June through October 1978 sediment traps were moored at three stations in an inshore–offshore transect in the Eastern Basin of Lake Erie. Settling fluxes measured with the traps exposed close to lake bottom were rather similar at all three stations during summer stratification, averaging 6.1 g∙m−2∙d−1 for dry weight, 293 mg∙m−2∙d−1 for particulate organic carbon (POC), 38 mg∙m−2∙d−1 for particulate nitrogen (PN), and 5.44 mg∙m−2∙d−1 for particulate phosphorus (PP). A comparison of the hypolimnetic traps with the epilimnetic traps at the offshore station indicated that considerable resuspension takes place even in summer. During fall, however, the nearshore sedimentation rates were markedly increased because of storm-induced bottom resuspension. By comparing the trap catches with sediment cores taken at all three stations, a resuspension model for dry weight, POC, and PN was developed. The calculations showed that newly formed organic material is resuspended and redeposited more frequently at nearshore locations than offshore. This repeated nearshore resuspension enhances decomposition of detritus, as shown by low relative phytoplankton activity in the hypolimnetic traps, and results in horizontal transport of fine-grained organic matter in the offshore direction. The significant POC and PN concentration differences found in the inshore–offshore transect of the bottom sediments can be explained by these two processes.Key words: sedimentation, sediment traps, sediment cores, resuspension, inshore–offshore differences

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3