Author:
Hill Terry W,Loprete Darlene M,Vu Kim N,Mokhtari Susan P. Bayat,Hardin L Vanessa
Abstract
Branching and other cell wall softening events in fungi and oomycetes are thought to involve the activity of secreted enzymes, which are packaged in membrane vesicles and delivered to sites of cell expansion, there to work in a carefully regulated manner upon the structure of the wall. Here we demonstrate a latent endo-(1,4)-β-glucanase activity in a mixed membrane fraction of the oomycete Achlya ambisexualis, which can be released by cysteine proteases with an increase of apparent activity. In addition, a similar endogenous process is strongly inhibited by the cysteine protease inhibitor iodoacetamide, while inhibitors of other types of proteases have a much smaller effect. Detergent treatment of membranes releases two glucanases detectable by electrophoretic activity staining, with apparent molecular masses of about 164 and 35 kDa. Proteolysis produces several activity bands, with major species having apparent molecular masses of about 149, 133, 48, 35, and 25 kDa. The ca. 35- and 25-kDa bands migrate in parallel with glucanases secreted during wall softening in vivo. We propose that the initiation of wall softening in Achlya involves the proteolytic processing and solubilization of at least some secreted endoglucanases. We also propose that the solubilization component of this process functions not just to provide the enzymes with access to wall matrix substrates but also may provide a mechanism for the eventual termination of their biological function.Key words: apical growth, hyphal branching, proteases, cell walls, protein secretion.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献