Homeostatic Characteristics of Single Species Fish Stocks in Arctic Lakes

Author:

Johnson Lionel

Abstract

The results of investigations on the fish stocks of seven Arctic lakes covering a period of 23 yr are described. These lakes have remained largely undisturbed since their formation in late glacial times; all but one are completely autonomous and of comparatively small size. Such lakes provide a unique opportunity for the development and testing of conceptual models. In all cases the only fish species present is Arctic charr, Salvelinus alpinus. Length frequency distributions derived from gillnet catch curves are shown to be, within reasonable limits, representative of the actual populations in the lake, and not artifacts of the sampling procedure. Length frequency curves show a unimodal or bimodal distribution and this structure, in the absence of perturbation, appears to remain constant indefinitely. Individuals are of great age but age-at-length is highly variable. Age and size structure are shown to be comparable with the age and size structure of the dominant tree species in a climax forest; it is concluded that forces of great generality fashion these configurations. It is hypothesized that all species tend to move towards a state of least energy dissipation; this can be most readily seen in the dominant species at the climax in an autonomous system. The dominant species is characterized by large individual size, a high degree of uniformity, high total biomass, great mean age, indeterminate age-at-death, and a low incidence of replacement stock. After severe perturbation it is shown that the charr stock returns to a state of least dissipation without oscillation. Absence of oscillation during the return to the initial state, combined with the long-term stability shown in control lakes, indicates the presence of an effective damping mechanism; this in turn indicates the existence of organization within the stock as a whole. Organization develops through an interactive mechanism described under the doctrine of homeokinesis, which is responsible for energy equipartitioning and the maintenance of uniformity. These concepts help to explain phenomena observed in more complex systems and help our understanding of ecosystem functioning.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3