Pretreatment withBacopa monnieriextract offsets 3-nitropropionic acid induced mitochondrial oxidative stress and dysfunctions in the striatum of prepubertal mouse brain

Author:

Shinomol George K.1,Bharath M.M. Srinivas1,Muralidhara 1

Affiliation:

1. Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), No. 2900, Hosur Road, Bengaluru 560029, India.

Abstract

The present investigation was designed to determine the efficacy of Bacopa monnieri (Brahmi; BM) to offset 3-nitropropionic acid (3-NPA) induced oxidative stress and mitochondrial dysfunction in dopaminergic (N27) cells and prepubertal mouse brain. Pretreatment of N27 cells with BM ethanolic extract (BME) significantly attenuated 3-NPA-induced cytotoxicity. Further, we determined the degree of oxidative stress induction, redox status, enzymic antioxidants, and protein oxidation in the striatal mitochondria of mice given BME prophylaxis followed by 3-NPA challenge. While 3-NPA-induced marked oxidative stress in the mitochondria of the striatum, BME prophylaxis markedly prevented 3-NPA-induced oxidative dysfunctions and depletion of reduced glutathione and thiol levels. The activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, thioredoxin reductase), Na+,K+-ATPase, and citric acid cycle enzymes in the striatum discernible among 3-NPA mice were significantly restored with BME prophylaxis. Interestingly, BME offered protection against 3-NPA-induced mitochondrial dysfunctions as evidenced by the restoration of the activities of ETC enzymes (NADH:ubiquinone oxidoreductase, NADH:cytochrome c reductase, succinate–ubiquinone oxidoreductase, and cytochrome c oxidase) and mitochondrial viability. We hypothesize that the neuroprotective effects of BME may be wholly or in part related to its propensity to scavenge free radicals, maintain redox status, and upregulate antioxidant machinery in striatal mitochondria.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3