Glucose and lactate turnover and gluconeogenesis in chronic metabolic acidosis and alkalosis in normal and diabetic dogs

Author:

Hetenyi Jr. G.,Paradis H.,Kucharczyk J.

Abstract

The turnover rate of glucose, the irreversible disposal rate of lactate, and the rate of gluconeogenesis from lactate were calculated by tracer methods in four normal and four alloxan-diabetic dogs under control conditions as well as in chronic, stable metabolic acidosis and alkalosis. Acidosis was produced by feeding dogs 0.8–1 g∙kg−1∙day−1 NH4Clover 1 week, alkalosis was produced by feeding dogs a chloride-free diet and injections of furosemide. Mean plasma pH in the three states were 7.28 ± 0.013, 7.40 ± 0.024, and 7.51 ± 0.015 in normal dogs, and 7.22 ± 0.025,7.42 ± 0.009, and 7.49 ± 0.002 in the diabetic dogs. Respective mean plasma bicarbonate levels were 14.6 ± 0.88, 22.0 ± 0.80, and 32.4 ± 1.88 mequiv. in normal dogs, and 12.3 ± 1.30, 22.6 ± 0.66, and 35.0 ± 1.14 mequiv. in diabetic animals. In normal dogs shifts in acid–base balance had no effect on the level of plasma glucose or the turnover rate of glucose. In diabetic dogs plasma glucose level was significantly elevated by alkalosis. Plasma lactate was positively correlated with plasma pH(r = 0.69, p < 0.01) and was in general higher in diabetic than in normal animals. The increment in concentration was due to a decreased clearance of lactate from the plasma. The irreversible disposal rate was not changed by the acid–base status. Whereas a larger fraction of lactate removed from the plasma appeared in glucose in diabetic animals, this fraction was not changed significantly by shifts in the acid–base status. The glycemic response to i.v. injected 0.05 U/kg insulin was not appreciably altered by the shifts in acid–base status in either normal or diabetic dogs. Stable metabolic acidosis and alkalosis of moderate degree has little effect on glucose and lactate kinetics and gluconeogenesis from lactate in either normal or diabetic dogs.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolic Acid-Base Disorders;Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice;2012

2. Acute phase response of piglets fed diets containing non-starch polysaccharide hydrolysis products and egg yolk antibodies following an oral challenge with Escherichia coli (k88);Canadian Journal of Animal Science;2009-09-01

3. Metabolic Acid-Base Disorders;Fluid, Electrolyte, and Acid-Base Disorders in Small Animal Practice;2006

4. Modeling Cerebral Arteriovenous Lactate Kinetics after Intravenous Lactate Infusion in the Rat;Journal of Cerebral Blood Flow & Metabolism;2004-10

5. Evidence for a Lactate Pool in the Rat Brain That is Not Used as an Energy Supply under Normoglycemic Conditions;Journal of Cerebral Blood Flow & Metabolism;2003-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3