Temporal variability of size–growth relationships in a Norway spruce forest: the influences of stand structure, logging, and climate

Author:

Castagneri Daniele1,Nola Paola2,Cherubini Paolo3,Motta Renzo1

Affiliation:

1. Department of AgroSelviTer, University of Turin, I-10095 Grugliasco (TO), Italy.

2. Department of Scienze della Terra e dell’Ambiente, University of Pavia, I-27100 Pavia (PV), Italy.

3. WSL Swiss Federal Research Institute, CH-8903 Birmensdorf (ZH), Switzerland.

Abstract

In a forest stand, competition plays a central role, affecting individual growth. The size–growth relationship (SGR) indicates whether large trees grow proportionally more than (asymmetric SGR), equal to (symmetric), or less than (inversely asymmetric) smaller trees. SGR is thus an indicator of the growth partitioning and competition intensity within a stand. Using tree-ring analysis, we investigated long-term trends and interannual variability of SGR in several Norway spruce (Picea abies (L.) Karst.) stands in the Paneveggio Forest (eastern Italian Alps) over a 100-year period. The study plots were characterized by different stand structures (one multilayered and two monolayered) and disturbance histories (different dates of logging). Logging conducted until the 1940s induced an inversely asymmetric SGR in all the plots. During the successive five decades, in the monolayered plots, it shifted to direct asymmetric (plot 1) and to symmetric (plot 2). In the multilayered plot (plot 3), SGR remained inversely asymmetric. A direct effect of climate on SGR interannual variability was not found. However, fast-growing trees had a stronger climatic signal than slow-growing trees, indicating that growth rate affects tree response to climate. Moreover, we observed that sensitivity to climate was reduced in the monolayered plots over the study period, possibly as a consequence of increased competition.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3