Spherical Couette flow of Oldroyd 8-constant model Part I. Solution up to the second-order approximation

Author:

Hassan A Abu-El

Abstract

The steady flow of an incompressible Oldroyd 8-constant fluid in the annular region between two spheres, or so-called spherical Couette flow, is investigated. The inner sphere rotates with anangular velocity Ω about the z-axis, which passes through the center of the spheres, while the outer sphere is kept at rest. The viscoelasticity of the fluid is assumed to dominate the inertia such that the latter can be neglected in the momentum equation. An analytical solution is obtained through the expansion of the dynamical variables in a power series of the dimensionless retardation time. The leading velocity term denotes the Newtonian rotation about the z-axis. The first-order term results in a secondary flow represented by the stream function that divides the flow region into four symmetric parts. The second-order term is the viscoelastic contribution to the primary viscous flow. The first-order approximation depends on the viscosity and four of the material time-constants of the fluid. The second-order approximation depends on the eight viscometric parameters of the fluid. The torque acting on the outer sphere has an additional term due to viscoelasticity that depends on all the material parameters of the fluid under consideration. For an Oldroyd-B fluid this contributed term enhances the primary torque but in the case of fluids with higher elasticity the torque components may be enhanced or diminished depending on the values of the viscometric parameters.PACS Nos.: 47.15.Rq

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3