Evaluating the performance of Gulf of Alaska walleye pollock (Theragra chalcogramma) recruitment forecasting models using a Monte Carlo resampling strategy

Author:

Lee Yong-Woo123,Megrey Bernard A.123,Macklin S. Allen123

Affiliation:

1. Joint Institute for the Study of the Atmosphere and Ocean, Box 354235, University of Washington, Seattle, WA 98195, USA.

2. NOAA–NMFS, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115-6349, USA.

3. NOAA–OAR, Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115-6349, USA.

Abstract

Multiple linear regressions (MLRs), generalized additive models (GAMs), and artificial neural networks (ANNs) were compared as methods to forecast recruitment of Gulf of Alaska walleye pollock ( Theragra chalcogramma ). Each model, based on a conceptual model, was applied to a 41-year time series of recruitment, spawner biomass, and environmental covariates. A subset of the available time series, an in-sample data set consisting of 35 of the 41 data points, was used to fit an environment-dependent recruitment model. Influential covariates were identified through statistical variable selection methods to build the best explanatory recruitment model. An out-of-sample set of six data points was retained for model validation. We tested each model’s ability to forecast recruitment by applying them to an out-of-sample data set. For a more robust evaluation of forecast accuracy, models were tested with Monte Carlo resampling trials. The ANNs outperformed the other techniques during the model fitting process. For forecasting, the ANNs were not statistically different from MLRs or GAMs. The results indicated that more complex models tend to be more susceptible to an overparameterization problem. The procedures described in this study show promise for building and testing recruitment forecasting models for other fish species.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3