Affiliation:
1. Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, B313 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada (e-mail: ).
Abstract
Biochemical studies using highly condensed Xenopus sperm chromatin and protein extracts prepared from multiple systems have lead to the identification of conserved proteins involved in chromosome decondensation. However, mutations to these proteins are unavailable as the systems used are not amenable to genetic studies. We took a genetic approach to isolating chromosome decondensation mutants by incubating Xenopus sperm chromatin with whole-cell extracts prepared from the Hartwell library of random temperature sensitive (ts) yeast cells. We show that decondensation of Xenopus sperm chromatin using wild type yeast extracts was rapid, ATP- and extract-dependent, and resistant to heat, N-ethylmaleimide, protease K, RNase A, and micrococcal nuclease. From 100 mutant extracts screened, we obtained one strain, referred to as rmc4, that was chromosome decondensation defective. The mutant was slow growing and exhibited germination defects. Low concentrations of rmc4 extract would eventually decondense sperm heads, and fractionation of the mutant extract produced a decondensation competent fraction, suggesting the presence of an overactive inhibitor in rmc4 cells. We performed a multicopy suppressor screen that identified PDE2, a gene encoding a protein that inhibits protein kinase A (PKA) activity. As PKA was previously shown in human cells to maintain condensed chromatin, our results suggest that PKA activity is elevated in rmc4 cells, causing a decondensation defect. Thus, our experiments reveal that yeast encodes an evolutionarily conserved chromosome decondensation activity that can be genetically manipulated.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献