Author:
Poon Clement,Mayer Paul M
Abstract
High level ab initio molecular orbital theory calculations have been used to study the geometries and thermochemistry of molecules and free radicals substituted by BH2, BHCH3, and B(CH3)2. The heats of formation and RR'BX bond strengths (RR' = H, H; H, CH3; CH3, CH3 and X = CH3, NH2, OH, F, SiH3, PH2, SH, and Cl) together with those for the open-shell systems RR'BY· (RR' = H, H; H, CH3; CH3, CH3 and Y = CH2, NH, O, SiH2, PH, and S) have been calculated at the G3 level of theory. The trends observed for the homolytic bond strengths in the closed-shell systems are those expected from electronegativity arguments, i.e., as the difference in electronegativity between the two atoms in the BX bond increases, the bond strength increases. Methyl substitution on B in the closed- and open-shell species increases the ionic contribution to the bond thereby decreasing the bond strength. The lowest possible homolytic dissociation energy for the free radicals RR'BY· is lower than those of their closed-shell counterparts, yet the BY· bonds are shorter. This is due to the demands of spin conservation in the dissociation of the radicals favouring the formation of higher energy products.Key words: ab initio calculations, bond dissociation energy, organoboron compounds, thermochemistry.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献