Intra- and intergenomic chromosome pairings revealed by dual-color GISH in trigenomic hybrids ofBrassica junceaandB. carinatawithB. maurorum

Author:

Yao X. C.12,Du X. Z.12,Ge X. H.12,Chen J. P.12,Li Z. Y.12

Affiliation:

1. National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China.

2. College of Life Science, Hubei University, Wuhan 430062, P.R. China.

Abstract

From dual-color genomic in situ hybridization (GISH) analysis of three trigenomic hybrids, Brassica maurorum (MM, 2n = 16) × B. juncea (AABB, 2n = 36) (M.AB), B. maurorum × B. carinata (BBCC, 2n = 34) (M.BC), and B. carinata × B. maurorum (BC.M), the three genomes of each hybrid were distinguished and autosyndesis and allosyndesis were evaluated. In M.AB, up to two autosyndetic bivalents occurred among the chromosomes of each genome; a maximum of three allosyndetic bivalents appeared between A-B, A-M, and B-M genomes. The similar pairings in M.BC and BC.M suggested that the cytoplasm of B. maurorum or B. carinata had no obvious effect on chromosome pairing. In M.BC and BC.M, a maximum of one autosyndetic bivalent was found for B and M genomes, but two were found for the C genome; from 0 to 2 allosyndetic bivalents were observed between B-C, B-M, and C-M genomes. The B-M allosyndesis frequency was higher than the A-M or C-M allosyndesis frequency in these hybrids, revealing the closer relationship of B and M genomes. The allosyndesis frequency was higher than the autosyndesis frequency among A, B, and C genomes in these combinations, suggesting that intergenomic homoeology was higher than intragenomic homoeology. The implications for genome evolution and crop breeding are discussed.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3