Antifreeze proteins as gas hydrate inhibitors

Author:

Walker Virginia K.1,Zeng Huang1,Ohno Hiroshi1,Daraboina Nagu2,Sharifi Hassan2,Bagherzadeh S. Alireza2,Alavi Saman2,Englezos Peter2

Affiliation:

1. Department of Biology, 116 Barrie Street, Queen’s University, Kingston, ON K7L 3N6, Canada.

2. Department of Chemical and Biological Engineering, 2360 East Mall, The University of British Columbia, V6T 1Z3, Canada.

Abstract

Certain organisms survive low temperatures using a range of physiological changes including the production of antifreeze proteins (AFPs), which have evolved to adsorb to ice crystals. Several of these proteins have been purified and shown to also inhibit the crystallization of clathrate hydrates. They have been found to be effective against structure II (sII) hydrates formed from the liquid tetrahydrofuran, sI and sII gas hydrates formed from single gases, as well as sII natural gas hydrates using a mixture of three gases, as assessed using a variety of instrumentation including stirred reactors, differential scanning calorimetry, nuclear magnetic resonance, Raman spectroscopy, and X-ray powder diffraction. For the most part, AFPs are equal to or more effective than the commercial kinetic hydrate inhibitor (KHI) polyvinylpyrolidone, even under field conditions where saline and liquid hydrocarbons are present. Enclathrated gas analysis has revealed that the adsorption of AFPs to the hydrate surface is distinct from tested commercial KHIs and results in properties that should make these proteins more valuable in some field applications. Efforts to overcome the difficulties of recombinant protein production are ongoing, but in silico models of AFP adsorption to hydrates may offer the opportunity to design commercial KHIs for hydrocarbon recovery and transport with all the attributes of these AFP ”green inhibitors”, including their benefits for human and environmental safety.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3