High sensitivity and resolution in 43Ca solid-state NMR experiments

Author:

Burgess Kevin M.N.11,Perras Frédéric A.11,Moudrakovski Igor L.11,Xu Yijue11,Bryce David L.11

Affiliation:

1. Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, ON K1N 6N5, Canada.

Abstract

A thorough investigation of solid-state NMR signal enhancement schemes and high-resolution techniques for application to the spin-7/2 43Ca nuclide are presented. Signal enhancement experiments employing double frequency sweeps, hyperbolic secant pulses, and rotor-assisted population transfer, which manipulate the satellite transitions of half-integer quadrupolar nuclei to polarize the central transition (m = + 1/2 ↔ –1/2), are carried out on four well-characterized 43Ca isotopically enriched calcium salts: Ca(NO3)2, Ca(OD)2, CaSO4·2H2O, and Ca(OAc)2·H2O. These results, in conjunction with numerical simulations of 43Ca NMR spectra under magic-angle spinning conditions, are used to identify the technique that provides the most uniform (or quantitative) polarization enhancement as well as the largest signal enhancement factors independent of size of the 43Ca quadrupolar coupling constant, which is the most significant source of resonance broadening in 43Ca NMR spectra. These samples are further investigated using 43Ca double-rotation NMR spectroscopy to yield isotropic, or solution-like, NMR spectra with exquisite resolution. In addition, three unique calcium sites are resolved for the hemihydrated form of calcium acetate (unknown structure), Ca(OAc)2·0.5H2O, with double-rotation NMR, whereas the more common, but more time-consuming, multiple quantum magic-angle spinning technique only clearly resolves two calcium sites. The results shown herein will be useful for other NMR spectroscopists attempting to acquire 43Ca solid-state NMR data for unknown and more complex materials with a higher degree of both sensitivity and resolution.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3