Affiliation:
1. School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China.
Abstract
Density functional theory calculation was performed to investigate the intermolecular interactions, thermodynamic properties, crystal structure, and detonation performance of CL-20 (2,4,6,8,10,12-hexanitrohexaazaisowurtzitane)/TEX (4,10-dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclododecane) cocrystal explosive. The results of natural bond orbital (NBO) and atoms in molecules analysis show that unconventional CH···O type hydrogen bonds and dispersion force are the main driving forces for the cocrystal formation. Monte Carlo simulation was employed to predict the crystal structure of the CL-20/TEX cocrystal. The cocrystal is most likely to crystallize in a monoclinic system (space group C2/C), with cell parameters a = 40.62 Å, b = 7.35 Å, c = 41.36 Å, and β = 157.38°. Based on crystal density, chemical energy, and heat of formations, detonation performance was calculated using Kamlet–Jacobs formulas. Detonation velocity and pressure of the CL-20/TEX cocrystal are higher than those of TEX but a litter lower than those of CL-20. Bond dissociation energy analysis shows that the cocrystal is thermal stable and meets the requirement of high energy density materials.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献