Determination of phenazopyridine in biological fluids using electromembrane extraction followed by high-performance liquid chromatography

Author:

Fotouhi Lida1,Yamini Yadollah2,Hosseini Razieh1,Rezazadeh Maryam2

Affiliation:

1. Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Vanak, P.O. Box 1993891176, Tehran, Iran.

2. Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.

Abstract

Recently, electro-assisted extraction of ionic drugs from biological fluids through a supported liquid membrane and into an aqueous acceptor solution was introduced as a new sample preparation technique and has been termed electromembrane extraction (EME). In the present work, this microextraction technique combined with high-performance liquid chromatography and ultraviolet detection has been developed for detection of phenazopyridine (PP) as a local analgesic drug in human plasma and urine samples. From a 6.5 mL neutral aqueous sample, PP was extracted for 20 min through a thin supported liquid membrane of 2-nitrophenyl octyl ether sustained in the pores of the wall of a porous hollow fiber and into an aqueous acidic acceptor solution (25 μL, containing negative electrode) by application of a DC electrical potential. The effects of several factors, including the nature of organic solvent, HCl concentration in donor and acceptor solutions, stirring speed, extraction time, and applied voltage on the extraction efficiency of the drug, were investigated and optimized. Satisfactory linearity ranges with correlation coefficients higher than 0.996 in different extraction media, admissible limits of detection (0.5 and 1.0 ng mL−1 in urine and plasma samples, respectively) and good repeatability and reproducibility (intra- and inter-assay precisions ranged between 3.7%–6.8% and 8.8%–12.5%, respectively) were obtained. The optimized EME procedure was applied to determine the concentration of PP in various matrices, such as plasma and urine samples, and satisfactory results were obtained.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3