Charge-induced instabilities of droplets containing macromolecular complexes

Author:

Sheriff Falana Aziza1,Consta Styliani2

Affiliation:

1. Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada.

2. Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.

Abstract

Solvated macromolecular complexes are ubiquitous in nature, notably in biological systems containing proteins and nucleic acids. Studies of the interactions within a macromolecular complex and between the complex and the solvent in droplet environments are critical for understanding the stability of macromolecular complexes in electrospray ionization (ESI) and nanofluidic experiments. In this study, two distinct cases of macromolecular complexes in aqueous nanodrops are examined by using molecular dynamics simulations: (i) a pair of sodiated poly(ethylene) glycol (PEG) macroions and (ii) a double-stranded DNA (dsDNA). PEG represents a case in which the surface energy of the aqueous droplet is larger than the solvent–macromolecule energy. Conversely, in a droplet solvating dsDNA, the solvent–macromolecule interaction energy overcomes the solvent interaction energy. We report that charge-induced instabilities previously identified for single macroions also appear in the case of complexes, but with a higher level of complexity. In the case of a pair of PEG macroions, we found that their conformations on the surface of a droplet “sense” each other. The charged PEGs are each released from a droplet at different times through contiguous extrusion or drying-out mechanisms. In the case of the DNA, the charge-induced instability manifests as a spine droplet morphology. Narrow regions of the spines promote break down of the hydrogen bonds that hold the dsDNA together. The dsDNA separates into two single strands as it is increasingly exposed to vacuum. These findings elucidate charge-induced instabilities of macromolecular complexes in droplets, which are critical intermediates in ESI and nanofluidic experiments.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3