Affiliation:
1. Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS B3M 3C3, Canada.
Abstract
Five series of a novel class of 4-acyl-1-[2-aryl-1-diazenyl]piperazines have been synthesized and characterized: the 4-acetyl-1-[2-aryl-1-diazenyl]piperazines [series 1]; the 4-cyclohexylcarbonyl-1-[2-aryl-1-diazenyl]piperazines [series 2]; the 4-benzoyl-1-[2-aryl-1-diazenyl]piperazines [series 3]; the benzyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates [series 4]; and the t-butyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates [series 5]. The compounds were synthesized by diazotization of a primary aromatic amine and subsequent coupling to an appropriate secondary amine: 1-acetylpiperazine [series 1]; 1-(cyclohexylcarbonyl)-piperaizine [series 2]; 1-benzoylpiperazine [series 3]; benzyl 1-piperazinecarboxylate [series 4]; and t-butyl piperazine-1-carboxylate (1-BOC-piperazine) [series 5]. The compounds of series 1–5 were characterized by 1H NMR, 13C NMR, high-resolution MS and IR spectroscopy. The model compounds 1,4-di[2-aryl-1-diazenyl]piperazines, and ethyl 4-[2-aryl-1-diazenyl]-1-piperazinecarboxylates were used to facilitate the assignment of the chemical shifts specific to the piperazine ring carbons. HSQC spectra of select compounds established the correlation between proton and carbon resonance signals.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献