Transport of exogenous 5-hydroxytryptamine across the outer plasma membrane of the syncytial tegument ofHymenolepis diminutais by simple diffusion

Author:

El-Razek Mona Abd,Webb Rodney A.

Abstract

The uptake of 5-hydroxytryptamine (5HT) from a 10 μM solution of exogenous [3H]5HT into the tegument of Hymenolepis diminuta was linear for the first 20 min of incubation. The rate of transport was 0.04 ± 0.01 pmol∙mg wet mass−1∙min−1, and there were no significant differences in the rate of uptake by the anterior, middle, and posterior regions of the body. The initial uptake was not Na+-dependent, was not saturable at up to 100 μM, was not highly temperature-dependent (Q10~ 1.2), and displayed activation energy of 11.8 kJ∙mol−1. Furthermore, uptake was not inhibited by p-chloromercuriphenyl sulphonic acid, imipramine, amiloride, or 5HT analogues, which collectively support a non-carrier-mediated uptake mechanism. Washing of the tissues with 10 mM 5HT after incubation in 10 μM [3H]5HT displaced less than 10% of the remaining [3H]5HT associated with the tissues, and little radioactivity was extracted by washing in acetone or chloroform. The uptake of [3H]5HT, however, was pH-dependent, the rate of uptake being closely correlated with the proportion of unprotonated 5HT. Only a small portion of the transported [3H]5HT was metabolized to a product associated with 5-hydroxyindoleacetic acid, and metabolism was significantly inhibited by the monoamine oxidase inhibitors iproniazid phosphate, deprenyl, and clorgyline. The present study showed that small amounts of [3H]5HT were taken up by H. diminuta by simple diffusion, little of the [3H]5HT was adsorbed to the surface of the worms or dissolved in the lipid phase of the plasma membrane, and some of the [3H]5HT taken up was metabolized by a monoamine oxidase-like enzyme.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3