Spatially distinct domains of cell behavior in the zebrafish organizer region

Author:

D'Amico Leonard A,Cooper Mark S

Abstract

To determine the sequence of cell behaviors that is involved in the morphogenesis of the zebrafish organizer region, we have examined the dorsal marginal zone of vitally stained zebrafish embryos using time-lapse confocal microscopy. During the late-blastula stage, the zebrafish dorsal marginal zone segregates into several cellular domains, including a group of noninvoluting, highly endocytic marginal (NEM) cells. The NEM cell cluster, which lies in a superficial location of the dorsal marginal zone, is composed of both enveloping layer cells and one or two layers of underlying deep cells. The longitudinal position of this cellular domain accurately predicts the site of embryonic shield formation and occupies a homologous location to the organizer epithelium in Xenopus laevis. At the onset of gastrulation, deep cells underneath the superficial NEM cell domain undergo involution to form the nascent hypoblast of the embryonic shield. Deep cells within the NEM cell cluster, however, do not involute during early shield formation, but instead move in front of the blastoderm margin to form a loose mass of cells called forerunner cells. Forerunner cells coalesce into a wedge-shaped mass during late gastrulation and eventually become overlapped by the converging lateral lips of the germ ring. During early zebrafish tail elongation, most forerunner cells are incorporated into the epithelial lining of Kupffer's vesicle, a transient teleostean organ rudiment long thought to be an evolutionary vestige of the neurenteric canal. Owing to the location of NEM cells at the dorsal margin of blastula-stage embryos, as well as their early segregation from other deep cells, we hypothesized that NEM cells are specified by an early-acting dorsalizing signal. To test this possibility, we briefly treated early-blastula stage embryos with LiCl, an agent known to produce hyperdorsalized zebrafish embryos with varying degrees of expanded organizer tissue. In Li+-treated embryos, NEM cells appear either within expanded spatial domains or in ectopic locations, primarily within the marginal zone of the blastoderm. These results suggest that NEM cells represent a specific cell type that is specified by an early dorsal patterning pathway.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3