The formation mechanism of Bacillus subtilis biofilm surface morphology under competitive environment

Author:

Li Xianyong1,Kong Rui1,Wang Jiankun1,Wu Jin1,He Ketai1,Wang Xiaoling12

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. School of Engineering and Applied Sciences, Harvard University, 02138 Cambridge MA, USA

Abstract

Material properties and growth environments affect the surface morphology of biofilms. Taken the biofilm growing in competitive environments as the object, which is compared with the single biofilm, we find that the competitive environment has an impact on the biofilm thickness and wrinkle patterns. Through diffusion-limited growth theoretical model analysis, it shows that the competitive environment is caused by cells competing for nutrition, and the competitive environment reacts on biofilms, which affect the phenotypic differentiation, causing changes in the stiffness of the biofilm. Using the theoretical and finite element simulation, we compare these results of bi-layer and tri-layer film–substrate models with experimental observations, and find that tri-layer film–substrate model is in line with the reality, which means that the layer between the biofilm and substrate plays an import role for wrinkle formation. Based on the above analysis, we further study effects of biofilm stiffness and interlayer thickness on wrinkles under competitive environment.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3