Characterization of an EPS-producing bifidobacterial strain based on integration of phenotypic and complete genome sequencing data

Author:

Liu Dianbin1,Huang Haohan1,Han Jinzhi1,Wu Qiong1,Xiang Yaoyao1,Liu Yan1,Wei Yanxia1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology/School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China

Abstract

Bifidobacterium and Lactobacillus are known to be common members of the human intestinal microbiota, which play important roles in maintaining the homeostasis of host gut microenvironment. Several bifidobacterial and lactobacilli strains have been used as probiotics for health benefits. The exopolysaccharides (EPSs) produced by strains from Bifidobacterium and Lactobacillus are considered as beneficial traits mediating these beneficial effects. In this study, 21 strains belonging to Bifidobacterium and Lactobacillus were isolated from healthy infants’ stool and were screened for EPS-producing ability. Among these strains, Bifidobacterium longum XZM1 showed the highest EPS productivity, which was further confirmed and characterized. The complete genome of strain XZM1 was sequenced, which revealed the presence of a gene cluster for EPS production. Furthermore, comparative genome analysis was performed among XZM1 and other strains from B. longum species. Following purification, the molecular weight (Mw) of EPS from XZM1 was determined as 4023 Da (Mw) through gel permeation chromatography. Analysis of the EPS hydrolysates revealed that the EPS was composed of mannose, glucose, galactose, arabinose, and fucose. Additionally, the EPS exhibited higher scavenging abilities toward hydroxyl than 1,1-diphenyl-2-picrylhydrazyl free radical. Overall, these results suggest that XZM1 from B. longum species may be a promising probiotic candidate.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3