Barite (BaSO4) biomineralization at Flybye Springs, a cold sulphur spring system in Canada's Northwest Territories

Author:

Bonny Sandy M,Jones Brian

Abstract

The Flybye Springs, Northwest Territories, consist of 10 active vents and numerous small seeps that discharge sulphide- and barium-rich spring waters at an average temperature 8.5 °C. Oxidation of sulphide to sulphate drives precipitation of stellate and platy barite microcrystals in the proximal flow paths. Downstream, and in vent- and tributary-fed ponds, barite is precipitated among streamer and mat forming colonies of sulphur-tolerant microbes, including Thiothrix, Beggiatoa, Thioploca, Chromatium, Oscillatoria, fungi (dominantly Penicillium), and unicellular sulphate reducing bacteria. These microbes mediate barite saturation by adjusting redox gradients and via passive adsorption of barium ions to cell surfaces and extracellular polymeric substances. Passive biomineralization produces barite laminae in floating microbial mats, nanometric coatings, and micrometric encrustations around microbial cells and filaments, and local permineralization of Thiothrix, Beggiatoa, and Oscillatoria outer cell walls. Intracellular barium enrichment and (or) metabolic sulphur oxidation may be important to "active biomineralization" that produces nanometric barite globules on the tips of fungal hyphae, barite-filled cell cavities in Beggiatoa and Thiothrix, and baritized sulphur globules. Degradation of biomineralized cells generates detrital "microfossils," including barite tunnels, layered cylinders, solid cylindrical grains and chains of barite beads. The diversity of inorganic and biomineralized barite in the Flybye Springs flow path highlights the influence of ambient chemistry, microbial metabolism, and cellular structure on barite solubility and on the taphonomy of microfossils preserved in barite.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3