Author:
Jacobs Douglass F,Rose Robin,Haase Diane L
Abstract
Three months following sowing, Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were transplanted into pots with controlled-release fertilizer (CRF) applied at rates of 0, 8, 16, and 24 g/2200 cm3 soil as a single uniform layer beneath the root system. Seedlings were destructively harvested periodically, and roots were divided into vertical segments above (S1), within (S2), and below (S3) the fertilizer layer. Two months following transplant, the number of active root tips was positively correlated with CRF rate in S1 and negatively correlated with rate in S2 and S3. At 6 months, root penetration into S3 was severely restricted at 16 and 24 g. This was attributed to detrimental changes in soil osmotic potential in S2. Fertilizer improved seedling growth at 8 g after 6 months compared with controls but was inhibitory at 24 g. Photochemical quantum yield was higher in all CRF treatments compared with controls 3 months following transplant, which corresponded with rapid initial CRF nutrient release. Despite improvements in nutrient release technology with CRF, high application rates may result in excessive concentrations of fertilizer nutrients in media, which can restrict root penetration and negatively affect seedling growth. Conservative application rates and improvements in CRF technology will help reduce the potential for adverse effects on seedling development.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献