The structure and internal rotational barrier of 3-phenyl-1-propyne by molecular orbital calculations and the J method
-
Published:1987-07-01
Issue:7
Volume:65
Page:1496-1498
-
ISSN:0008-4042
-
Container-title:Canadian Journal of Chemistry
-
language:en
-
Short-container-title:Can. J. Chem.
Author:
Schaefer Ted,Penner Glenn H.
Abstract
The 1H nuclear magnetic resonance spectral parameters are reported for 3-phenyl-1-propyne dissolved in CCl4, C6D6, and in acetone-d6. The long-range spin–spin coupling constants imply very small and perhaps vanishing barriers to internal rotation about the [Formula: see text] bond in all three solutions, in contrast to benzyl cyanide in which there exist significant solvent perturbations of the internal barrier. STO 3G MO computations, utilizing geometry optimization procedures, imply an internal rotational potential of V/kJ mol−1 = −2.8 sin2 ψ − 0.6 sin2 2ψ; the angle ψ is 90° when the C≡C bond lies in a plane perpendicular to the benzene plane. 6-31G MO energies imply V/kJ mol−1 = −0.3 sin2 ψ − 0.4 sin2 2ψ, the fourfold component being larger than the twofold. A flat minimum occurs near ψ = 50°.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献