Author:
Vank Judith C,Sosa Carlos P,Perczel Andras,Csizmadia Imre G
Abstract
Selenocysteine is expected to have 9 × 9 = 81 conformations [3 × 3 = 9 backbone: ψ (g+,a,g-) × ϕ (g+,a,g-) and 3 × 3 = 9 side-chain: χ1 (g+,a,g-) × χ2 (g+,a,g-)]. In the present study, all the torsional modes of the side-chain (χ1: rotation about the Cα-Cβ and χ2: rotation about the Cβ-Se bonds) were investigated in the relaxed γL backbone [(ϕ,ψ); (g-,g+)] conformation. Seven out of the nine expected minima were found at the RHF/3-21G level of theory for N-formyl-L-selenocysteinamide (For-L-Sec-NH2) and N-acetyl-L-selenocysteine-N-methylamide (Ac-L-Sec-NHMe). The stabilization energy exerted by the -CH2-SeH side-chain has been compared with that of -CH2-SH and -CH2-OH. Relative energies of the various conformers were also obtained via single point calculations at the B3LYP/6-31G(d,p) level of theory. Topological analysis of the electron density has been performed by Bader's Atoms in Molecule (AIM) approach using the results. The structures were also optimized at the B3LYP/6-31+G(d,p) level of theory.Key words: selenocysteine side-chain conformations, ab initio MO study, Multidimensional Conformational Analysis (MDCA), Atoms in Molecules (AIM), Bader's electron density analysis.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献