A fibre-optic biosensor for detection of microbial contamination

Author:

Almadidy Amer,Watterson James,Piunno Paul AE,Foulds Inge V,Horgen Paul A,Krull Ulrich

Abstract

A fibre-optic biosensor is described for detection of genomic target sequences from Escherichia coli. A small portion of the LacZ DNA sequence is the basis for selection of DNA probe molecules that are produced by automated nucleic acid synthesis on the surface of optical fibres. Fluorescent intercalating agents are used to report the presence of hybridization events with target strands. This work reviews the fundamental design criteria for development of nucleic acid biosensors and reports a preliminary exploration of the use of the biosensor for detection of sequences that mark the presence of E. coli. The research work includes consideration of the length of the strands and non-selective binding interactions that can potentially block the selective chemistry or create background signals. The biosensors were able to detect genomic targets from E. coli at a picomole level in a time of a few minutes, and dozens of cycles of use have been demonstrated. In a step towards the preparation of a completely self-contained sensor technology, a new intercalating dye known as SYBR 101 (Molecular Probes, Inc.) has been end-labelled to the LacZ nucleic acid probe, to examine whether dye tethered onto an oligonucleotide terminus could fluorimetrically transduce the formation of hybrids. The results obtained from experiments in solution indicate that the use of tethered dye provides fluorescence signals that are due to hybridization, and that this process is functional even in the presence of a high concentration of non-selective background DNA obtained from sonicated salmon sperm. Key words: biosensor, DNA, fibre optic, hybridization, fluorescence, pathogen, E. coli.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3